12 research outputs found

    Clonal expansion and epigenetic inheritance of long-lasting NK cell memory

    Get PDF
    Clonal expansion of cells with somatically diversified receptors and their long-term maintenance as memory cells is a hallmark of adaptive immunity. Here, we studied pathogen-specific adaptation within the innate immune system, tracking natural killer (NK) cell memory to human cytomegalovirus (HCMV) infection. Leveraging single-cell multiomic maps of ex vivo NK cells and somatic mitochondrial DNA mutations as endogenous barcodes, we reveal substantial clonal expansion of adaptive NK cells in HCMV(+) individuals. NK cell clonotypes were characterized by a convergent inflammatory memory signature enriched for AP1 motifs superimposed on a private set of clone-specific accessible chromatin regions. NK cell clones were stably maintained in specific epigenetic states over time, revealing that clonal inheritance of chromatin accessibility shapes the epigenetic memory repertoire. Together, we identify clonal expansion and persistence within the human innate immune system, suggesting that these mechanisms have evolved independent of antigen-receptor diversification

    Mechanical forces switch blood vessel subtypes to arrest adolescent bone growth

    Get PDF
    Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H endothelial cells differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus arrest adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C phosphorylates dentin matrix protein 1 (DMP1), previously identified as a key factor in bone mineralization. This phosphorylation elicits a burst in DMP1 secretion from osteoblasts. Extracellular DMP1 inhibits vascular endothelial growth factor (VEGF) signalling by preventing VEGFR2 phosphorylation and VEGFR3 expression on the tip cells of type H endothelium. DMP1-mediated VEGF inhibition transforms bone growth-promoting type H vessels into quiescent type L vasculature to arrest bone growth and enhance bone mineralization. This molecular mechanism links mechanical forces and the termination of bone growth via accumulation of an extracellular matrix protein and its regulation of vascular subtypes. It suggests new options for the treatment of diseases characterised by inappropriate turnover or invasion of bone such as osteoarthritis, osteoporosis and osteosarcoma

    Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth

    Get PDF
    Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma

    Flow cytometry can reliably capture gut microbial composition in healthy adults as well as dysbiosis dynamics in patients with aggressive B-cell non-Hodgkin lymphoma

    Get PDF
    Modulation of commensal gut microbiota is increasingly recognized as a promising strategy to reduce mortality in patients with malignant diseases, but monitoring for dysbiosis is generally not routine clinical practice due to equipment, expertise and funding required for sequencing analysis. A low-threshold alternative is microbial diversity profiling by single-cell flow cytometry (FCM), which we compared to 16S rRNA sequencing in human fecal samples and employed to characterize longitudinal changes in the microbiome composition of patients with aggressive B-cell non-Hodgkin lymphoma undergoing chemoimmunotherapy. Diversity measures obtained from both methods were correlated and captured identical trends in microbial community structures, finding no difference in patients' pretreatment alpha or beta diversity compared to healthy controls and a significant and progressive loss of alpha diversity during chemoimmunotherapy. Our results highlight the potential of FCM-based microbiome profiling as a reliable and accessible diagnostic tool that can provide novel insights into cancer therapy-associated dysbiosis dynamics

    A pulmonologist's guide to perform and analyse cross-species single lung cell transcriptomics

    Get PDF
    Single-cell ribonucleic acid sequencing is becoming widely employed to study biological processes at a novel resolution depth. The ability to analyse transcriptomes of multiple heterogeneous cell types in parallel is especially valuable for cell-focused lung research where a variety of resident and recruited cells are essential for maintaining organ functionality. We compared the single-cell transcriptomes from publicly available and unpublished datasets of the lungs in six different species: human (Homo sapiens), African green monkey (Chlorocebus sabaeus), pig (Sus domesticus), hamster (Mesocricetus auratus), rat (Rattus norvegicus) and mouse (Mus musculus) by employing RNA velocity and intercellular communication based on ligand-receptor co-expression, among other techniques. Specifically, we demonstrated a workflow for interspecies data integration, applied a single unified gene nomenclature, performed cell-specific clustering and identified marker genes for each species. Overall, integrative approaches combining newly sequenced as well as publicly available datasets could help identify species-specific transcriptomic signatures in both healthy and diseased lung tissue and select appropriate models for future respiratory research

    Clonally expanded PD-1-expressing T cells are enriched in synovial fluid of juvenile idiopathic arthritis patients

    Get PDF
    Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition in childhood. Disease etiology remains largely unknown, however a key role in JIA pathogenesis is surely mediated by T cells. T lymphocytes activity is controlled via signals, known as immune-checkpoints (IC). Delivering an inhibitory signal or blocking a stimulatory signal to achieve immune suppression is critical in autoimmune diseases. However, the role of IC in chronic inflammation and autoimmunity must still be deciphered. In this study, we investigated at single cell level the feature of T cells in JIA chronic inflammation both at transcriptome level via single-cell RNA sequencing and at protein level by flow cytometry. We found that despite the heterogeneity in the composition of synovial CD4+ and CD8+ T cells, those characterized by PD-1 expression were clonally expanded Trm-like cells and displayed the highest pro-inflammatory capacity, suggesting their active contribution in sustaining chronic inflammation in situ. Our data support the concept that novel therapeutic strategies targeting PD-1 may be effective in the treatment of JIA. With this approach, it may become possible to target overactive T regardless of their cytokine production profile

    Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19

    Get PDF
    Prolonged lung pathology has been associated with COVID-19, yet the cellular and molecular mechanisms behind this chronic inflammatory disease are poorly understood. In this study, we combine advanced imaging and spatial transcriptomics to shed light on the local immune response in severe COVID-19. We show that activated adventitial niches are crucial microenvironments contributing to the orchestration of prolonged lung immunopathology. Up-regulation of the chemokines CCL21 and CCL18 associates to endothelial-to-mesenchymal transition and tissue fibrosis within these niches. CCL21 over-expression additionally links to the local accumulation of T cells expressing the cognate receptor CCR7. These T cells are imprinted with an exhausted phenotype and form lymphoid aggregates that can organize in ectopic lymphoid structures. Our work proposes immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and perpetuates tissue remodeling

    Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury

    No full text
    Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions

    Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo

    No full text
    In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory
    corecore